Transmetteur de pression MBS 33M

Introduction

Le transmetteur de pression MBS 33M Danfoss est conçu pour installation directe au point de mesure.

Le transmetteur MBS 33M est mis au point pour la surveillance et la régulation de pression dans les environnements maritimes et industriels.

Le MBS 33M émet un signal de courant amplifié, linéarisé et thermiquement compensé de 4-20 mA. Ce signal de sortie est transmis sur de longues distances sans problèmes.

Utilisation

Le transmetteur de pression MBS 33M est destiné aux environnements difficiles.

Environnement climatique Le MBS 33M est fiable même dans des conditions extrêmes d'humidité et de température. Le boîtier chargé de silicone assure une protection maximale contre la poussière et l'humidité.

Environnement électrique Un filtre HF intégré protège le MBS 33M de façon optimale contre les parasites électromagnétiques Environnement mécanique
Il est robuste et supporte les pointes de pression, les surpressions et les vibrations

pression, les surpressions et les vibrations pouvant atteindre 20 g (g = 9,81 m/s²) dans la bande de fréquence entre 20 Hz et 2 kHz.

Exemples d'application Moteurs diesel, réducteurs, compresseurs, pompes, chaudières, groupes électrogènes, commandes hydrauliques et pneumatiques, et groupes moteurs.

Description

Le boîtier et la membrane des MBS 33M sont en acier inoxydable.

Classe de précision 1. Plage de pression entre 1 et 600 bar.

Raccord de pression : G 1/2 A ; tension d'alimentation : de 10 à 30 V c.c. ; signal de sortie : 4-20 mA.

Raccordement électrique par connecteur DIN 43650 ou câble fixe de 2 m.

Les MBS 33M sont offerts en deux modèles :

a: Transmetteur de pression relatif (gauge) et b: Transmetteur de pression absolu.

Les transmetteurs relatifs utilisent la pression atmosphérique comme référence.

Les transmetteurs absolus utilisent le vide total comme référence.

Homologations

- Lloyd's Register of Shipping
- Det Norske Veritas
- Germanischer Lloyd
- Registro Italiano Navale
- American Bureau of Shipping
- Bureau Veritas
- Nippon Kaiji Kyokai
- Polski Rejestr. Statkov
- · Russian Maritime Register of Shipping

Fiche technique

Transmetteur de pression MBS 33M

Caractéristiques techniques

Performance

Précision	≤ ±0.3% PE (typ.) ≤ ±0.8% PE (max.)
Linéarité (BFSL)	≤ ±0.2% PE
Hystérésis et répétabilité	≤ ±0.1% PE
Influence de la température ambiante, point zéro	≤ ±0.1% PE/10K (typ.) ≤ ±0.2 %PE/10K (max.)
Influence de la température ambiante, sensitivité (span)	≤ ±0.1% PE/10K (typ.) ≤ ±0.2 %PE/10K (max)
Temps de réponse, de 10 à 90% (liquides)	< 4 ms

Spécifications électriques pour un signal de sortie 4-20 mA

Signal de sortie nominal	de 4 à 20 mA
Tension d'alimentation, U _B (polarité protégée)	de 10 à 30 V c.c.
Dépendance de la tension	≤ ±0.05% PE/10V
Limitation du courant (signal de sortie linéaire jusqu'à 1,5 x la plage nom	inale) 28 mA
Charge maxi, R _L	$R_{L} \leq \frac{U_{B} - 10 \text{ V}}{0.02 \text{ A}} [\Omega]$

Conditions de fonctionnement

Plage de température			Fonctionnement		de -40 à +85°C	
			Compensé		de 0 à +80°C	
			Transport		de -50 à +85°C	
EMC - Emission					EN 50081-1	
	Décharge électrostat.		air	8 kV	EN 50082-2 (IEC 801-2)	
			contact	4 kV	EN 50082-2 (IEC 801-2)	
EMC - Immunité	RF	(champ)	10 V/m, 26 MHz - 1 GHz		EN 50082-2 (IEC 801-3)	
	NI —	(fil)	10 V _{rms} , 150 kHz - 30 MHz		EN 50082-2 (IEC 801-6)	
	Transitoire —	pointe	4 kV (CM), Clamp		EN 50082-2 (IEC 801-4)	
		m. normale 1 kV (CM,DM), Rg = 42 Ω		EN 50082-2 (IEC 801-5)		
Résistance d'isolation				> 100 M Ω ved 100 V c.c.		
Test de fréquence m	est de fréquence m		500 V, 50 Hz		SEN 361503	
Stabilité aux vibration	sinusoïdale		20 g, 25 Hz - 2 kHz		IEC 68-2-6	
Stabilite aux vibration	aléatoire)	7,5 g _{ms} , 5 Hz	: - 1 kHz	IEC 68-2-34, IEC 68-2-36	
Stabilité aux chocs	Choc		500 g / 1 ms		IEC 68-2-27	
Stabilite aux criocs	Chute lik	Chute libre			IEC 68-2-32	
Etanchéité	Connect	Connecteur DIN 43650			IP 65 - IEC 529	
Lianonono	Câble 2	Câble 2 m			IP 67 - IEC 529	

Spécifications mécaniques

Matériau	Eléments en contact avec le fluide	DIN 17440-1.4404 (AISI 316 L)	
Malenau	Boîtier	DIN 17440-1.4404 (AISI 316 L)	
Poids	0.2 kg		

Numéros de code

Pression relative

	Plage de travail bar	Pression d'essai maxi bar	Pression d'écla- tement mini* bar	Nº de code
	0 - 1	2	50	060G3121
	0 - 1,6	8	50	060G3122
	0 - 2,5	8	50	060G3123
	0 - 4	8	50	060G3124
	0 - 6	20	50	060G3125
	0 - 10	20	50	060G3126
	0 - 16	50	100	060G3127
	0 - 25	50	100	060G3128
-	0 - 40	80	800	060G3129
	0 - 60	200	800	060G3130
Version à connecteur Surpression	0 - 100	200	800	060G3131
	0 - 160	320	800	060G3132
	0 - 250	600	1600	060G3133
	0 - 400	600	1600	060G3134
	0 - 600	900	2400	060G3135

Pression relative

	Plage de travail bar	Pression d'essai maxi bar	Pression d'écla- tement mini* bar	Nº de code
	0 - 4	8	200	060G3139
	0 - 6	20	200	060G3140
А	0 - 10	20	200	060G3141
Ц	0 - 16	50	200	060G3142
其	0 - 25	50	200	060G3143
	0 - 40	80	800	060G3144
	0 - 60	200	800	060G3145
層	0 - 100	200	800	060G3146
~	0 - 160	320	800	060G3147
Version à câble	0 - 250	600	1600	060G3148
	0 - 400	600	1600	060G3149
	0 - 600	900	2400	060G3150

^{*)} La pression d'éclatement est la pression que supporte le transmetteur sans atteinte à son étanchéité.

Fiche technique	Transmetteur de pression MBS 33M
Danfoss påtager sig intet ansvar for mulige fe	il i kataloger, brochurer og andet trykt materiale. Danfoss forbeholder sig ret til uden forudgående varsel at foretage ændringer i sine produkter,
nerunder i produkter, som allerede er i ordre, Alle varemærker i dette materiale tilhører de	eil i kataloger, brochurer og andet trykt materiale. Danfoss forbeholder sig ret til uden forudgående varsel at foretage ændringer i sine produkter, såfremt dette kan ske uden at ændre allerede aftalte specifikationer. respektive virksomheder. Danfoss og Danfoss-logoet er varemærker tilhørende Danfoss A/S. Alle rettigheder forbeholdes.
6430 Nordborg Danmark	

DKACT.PD.P20.I1.04 © Danfoss A/S (AC-SP.MR) 06-2000